Semiparametric Analysis of Heterogeneous Data Using Varying-Scale Generalized Linear Models.
نویسندگان
چکیده
This article describes a class of heteroscedastic generalized linear regression models in which a subset of the regression parameters are rescaled nonparametrically, and develops efficient semiparametric inferences for the parametric components of the models. Such models provide a means to adapt for heterogeneity in the data due to varying exposures, varying levels of aggregation, and so on. The class of models considered includes generalized partially linear models and nonparametrically scaled link function models as special cases. We present an algorithm to estimate the scale function nonparametrically, and obtain asymptotic distribution theory for regression parameter estimates. In particular, we establish that the asymptotic covariance of the semiparametric estimator for the parametric part of the model achieves the semiparametric lower bound. We also describe bootstrap-based goodness-of-scale test. We illustrate the methodology with simulations, published data, and data from collaborative research on ultrasound safety.
منابع مشابه
Testing Generalized Linear and Semiparametric Models Against Smooth Alternatives
We propose goodness of t tests for testing generalized linear models and semiparametric regression models against smooth alternatives The focus is on models having both continuous and factorial covariates As smooth extension of a parametric or semiparametric model we use generalized varying coe cient models as proposed by Hastie Tibshirani A likelihood ratio statistic is used for testing and as...
متن کاملLocal Estimators in Multivariate Generalized Lin- Ear Models with Varying-coeecients
The varying-coeecient model allows to investigate and visualize the form of the interaction of variables in the predictor. Moreover, common approaches like semiparametric modelling and generalized linear models are special cases. The focus is on local estimators, in particular local likelihood and locally weighted least squares estimators, which both are consistent and asymptotically normally d...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملSemiparametric Generalized Linear Models: Bayesian Approaches
Generalized linear models are one of the most widely used tools of the data analyst. However, the model assumes that the structure of the regression relationship between the response and the covariates is linear on a known transformed scale. We focus here on diierent methods to perform the same type of analyses. These involve using nonparametric models to determine the relationship between the ...
متن کاملLong-term Iran's inflation analysis using varying coefficient model
Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Statistical Association
دوره 103 482 شماره
صفحات -
تاریخ انتشار 2008